PyTorch_《Grokking Deep Learning》
本篇章主要记录的是学习《Grokking Deep Learning》的收获。是Pytorch探索之旅的第3篇章啦!
Reference materials include:
- Andrew W. Traska撰写的《Grokking Deep Learning》是开发强大模型和理解深度神经网络基础机制的重要资源
- Codecademy:发现一个学python的在线平台,感觉很不错。交互性质很强。
- Github上一个关于深度学习的教程资料库
- Github上分析Pytorch源码的库
还没看的:
- Ian Goodfellow, Yoshua Bengio和Aaron Courville的《Deep Learning》
1《Grokking Deep Learning》
这本书可以帮助理解框架内部的原理,比如:Torch, TensorFlow, Keras, and others.
- Chapter1:Machine learning algorithm is either supervised or unsupervised and either parametric or nonparametric.
- Chapter2:Neural network is one or more weights that you can multiply by the input data to make a prediction.
PyTorch_《Grokking Deep Learning》
http://example.com/2024/06/28/0_Pytorch_2/